M-theory and Type IIA Flux Vacua

based on 1208.0261 w/ J. Muñoz

Outline:

I Introduction

II New Sources of B-type Charge

III Examples
Introduction

- Basic no-go theorem forbidding flux compactifications in M-theory and string theory

Consider 11-dim G2 BRA:

\[S_{11} = \frac{1}{2k^2} \int d^{11}x \sqrt{-G} \left(R - \frac{1}{4} G^{11} \right) - \frac{1}{2k^2} \int d^{11}x \sqrt{-G} \nabla \nabla G \]

Take a warped product \(M_7 \times M_4 \times \mathbb{R} \):

\[ds^2 = e^{2w(y)} \left(\tilde{g}_{\mu\nu} dx^\mu dx^\nu + \tilde{g}_{mn}(y) dy^m dy^n \right) \]

Lorentz \(= \tilde{g}_{\mu\nu} \), \(g_{mn} = f \sqrt{-\tilde{g}(y)} \)

No sources \(\Rightarrow \) \(8 \beta = 0 \) and \(f = f_0 e^{-4w} \)

E.o.m.: \(R_{mn} = \frac{1}{2} \left(\tilde{g}_{mn} G - 2 \tilde{g}_{mn} \nabla^2 \right) \)

\[d^* \nabla G = -\frac{1}{2} \nabla G \]
Maximally symmetric space-time:

Adding or Mink. requires \(\hat{F}_{\mu \nu} = \frac{1}{2} \varphi \delta_{\mu \nu} \)

\(w/ w \) const.

\(R^{(4)} = -\frac{\mu}{3} \varphi^2 - \frac{2}{3} \left[6 \hat{\psi} \psi \right] \)

from sources

\(R^{(2)} = \frac{5}{6} \left[6 \hat{\psi} \psi \right] + \frac{2}{6} \left(\frac{\delta_{\mu \nu}}{\text{dim.}} \right) \)

\(= \frac{5}{6} \left[6 \hat{\psi} \psi \right] \)

\(\Rightarrow R^{(4)} \leq 0 \)

\(= \frac{5}{6} \left(R^{(4)} - 4 \hat{\psi} \psi - 36 \left[\delta_{\mu \nu} \right] \right) \)

\(= \frac{4}{5} \frac{c^{-2w}}{m^2} \left(\lambda - \frac{1}{4} \frac{c^{-2w}}{m^2} \lambda^2 \right) \)

\(\lambda = \frac{\int m^2 c^{-2w} R^{(4)} \, dv}{4 \int m^2 c^{-2w} \, dv} \)

So \(\lambda = 0 \Rightarrow R^{(4)} = 0 \Rightarrow \text{All } 6+1 \text{vectors vanish.} \)

No Mink. or de Sitter.

\(\hat{F}_{\mu \nu} = \hat{\psi} \psi \hat{F}_{\mu \nu} = \hat{\psi} \psi \left(\hat{\psi} \psi + 9 \hat{\psi} \psi \right) \)

\(= \frac{7}{144} \int e^{-6w} - \frac{1}{144} e^{2w} \left[6 \hat{\psi} \psi \right] \left[\left[\lambda \right]^2 \right] \)

Strongest constraint since the r.h.s. must be point-wise independent.
Framed - Rubin A_5 sols correspond to $w \equiv 0$. There are a few generically above.

Generically Λ is a (curvature $R^{(2)}$). Flux solns $\Lambda \ll R^{(2)}$ parametrically smaller than $R^{(2)}$ encounter the Mink. no-go thm. None known (to my knowledge).

Evaing this no-go (Gibbons) requires higher derivative ingredients.
No mechanism is known in m-theory, IIA or IIB. I will comment on massive IIA later.

In HeV/Type D, there are R^2 couplings

$$\int \sqrt{g} \, R + R^2 + \ldots$$

$$d \mathcal{L} = d^4 \theta \left(\text{Tr} \left(R \wedge R \right) - \text{Tr} \left(F \wedge F \right) \right)$$

$$\frac{1}{4} \partial \mathcal{L} \quad \text{4 derivative}$$

which modify the no-go, permitting many (but not all) \mathfrak{sl}_q vacua.

The resulting spaces are twisted manifolds M.

Finally, from T calculate \mathfrak{sl}_q the flow by

$$\mathfrak{sl}_q \quad H_3 = \frac{1}{\ell} \mathcal{J} \mathcal{J}.$$
In type II string theory, D-branes support gravitation and W3 couplings:

\[
W_3 = \frac{1}{k} \int_{\mathcal{M}} \left[\frac{C}{\sqrt{A(R_T) / A(R_N)}} \right]^{2k+1} \sqrt{A(R_T) / A(R_N)}
\]

\[
\sqrt{A(R_T)} = 1 + \left(\frac{4\pi^2}{384\pi^2} \right) (r_T + r_N) + \ldots
\]

Argued from inflow. Similar couplings exist on D-particles.

In particular, D7 1/256 support

\[
\int C_4 \wedge \mathcal{P}, \quad \mathcal{P} = \frac{1}{8\pi^2} + \ldots
\]

This gives a source

\[
dF_5 = F_3 \wedge \mathcal{H}_2 + \psi \wedge \mathcal{E}_0
\]

\[
X_4 \text{ appearing in 4-dimensional superstring \textit{M}theory.}
\]

What about \textit{M}theory and IIA?

Note that all corrections that produce flux
include new higher derivative source of fine charge. Let's search for such potential sources.

II New Sources of Fermi Charge.

7-brane and metric are sufficient to induce charge in II B and violate the no-go time.

How about II A?

\[m = C \gamma, \text{ could } 6 \text{-planes be different?} \]

The answer appears to be no. Recall that

\[ds^2 = \sqrt{\left(dx^2 + c^2 d\omega^2 \right) + \sqrt{1 - (dy + A)^2}} \]

\[\sqrt{V} = 1 + \frac{1}{2} \gamma, \quad y - y' + 2\pi \quad A \text{ at } d\omega \partial \phi \]

\[ds^2 = d\theta^2 + \sin^2 \theta \ d\phi^2 \]

This is a perfectly regular metric.
For D-planes, the story looks similar.

\[\text{orb} \to J_0(2N) \to \text{AH metric} \]

\[\text{orb}^{-1} \to J_0(2N+1) \quad \text{massive DA} \]

\[\text{orb}^+ \to J_0(N) \to \text{"frozen" O(4) sing.} \]

\[\text{orb}^+ \to J_0(N) \quad \text{massive DA} \]

\[\text{orb} \to J_0(N) \]

Each plane either lifts to a regular metric or has positive tension. These cannot evade the go-no go here.

In this respect DA and DB are very different.

Another way to see this is to note that

\[\text{MS wrapped by orb / orb} \]

\[\text{odd - dim.} \]

\[\left(C \wedge A \right) \]

\[\text{an - dim.} \]

These couplings induce no charge.
Let's learn something from duality. Imagine

\[\int_{\mathcal{M}} \mathcal{F} = \frac{1}{8n} \int_{\mathcal{M}} \mathcal{F} = \mathcal{F} \]

Induced D7-brane charge.

Take \(y = \text{ constant} \) for \(x^1 \) corresponding to a winding direction. Define

\[\mathcal{D}_6 \quad 0 \quad 1 \quad 2 \quad 4 \quad 5 \quad 6 \]

\[\mathcal{D}_4 \quad 0 \quad 1 \quad 2 \quad 3 \quad 7 \]

As I'll explain, \(y \text{ constant} \) \(\mathcal{F} \) relates if there isn't an H-flux of the form

\[H_{ij}: \text{This is a flux induced charge!} \]
Without any further work, we conclude that the way to evade the no-go’s is to consider a background metric and H-flux, and we these big must a odd - dimensional 4 derivative couplings.

Let me sketch the details: isometry direction is \(y \) \(dy = e^m e^m + \xi \xi \) \(\xi = f(x)/dy + \eta \)

The connection \(A \) encodes the topology of the \(S^1 \) bundle.

Then \(\hat{\omega} = \omega \wedge + \omega \wedge \eta \)

\(\hat{\omega} \eta = \hat{\omega} \eta \omega \) - form for full metric

\(\hat{\omega} \eta = \hat{\omega} \eta \omega \) - form depending on \(\xi \)

This allows us to integrate out the isometry direction.

Under Buscher: \(A_i dx^i \rightarrow \xi^i \frac{dx^i}{H} \)

Topology of \(\rightarrow H \)-flux \(S^1 \)-bundle
\[T_0 - 3 \text{ unrun NV 5-done} \]

\[\frac{1}{2} \left(\frac{1}{2} + \frac{1}{4} \right) x + 1 = \frac{1}{2} x \]

\[V = \sqrt{\frac{1}{2} x + 1} \]

\[\text{Returning to the general case:} \]

\[\sum y \, dR \, n / \phi^2 = \sum y \, \phi^2 n + \pi \phi n / \phi^2 \]

\[= x y \]

\[x \phi^2 = \frac{1}{2} \frac{c}{\phi^2} \]

\[\phi = \frac{1}{2} \frac{c}{\phi^2} \]

\[H_3 = x^3 - 3 \phi \]

\[\text{on all-branes} \]

\[\sum (c_5) y \wedge x^3 \]

\[\text{generally} \]

\[\sum (c_5) \wedge x^3 \]

\[\text{normal.} \]

\[\text{We need a clean geometric understanding of these couplings! Physic from nearly inflation.} \]
One can lift this coupling to M-theory. The argument goes as follows:

M-theory on T^7

\[\text{TIA 06-brane} \rightarrow \text{IIA closed string join for the 06-brane.} \]

\[\int_{\Omega^2} C_3 \wedge \Omega^8 \text{ m5-brane charge} \]

\[\int_{\Omega^{10}} C_3 \wedge \Omega^7 \]

\[\text{Lifting to M-theory} \int C_6 \wedge X_5 \text{ induces M5 charge.} \]

\[X_5 \text{ depends on G-flux!} \]

This is duality changing M-theory on M_8 with

\[T^8 \rightarrow \text{M}_8 \text{ stacking w/} \int C_3 \wedge \Omega^2 \]

\[\rightarrow \text{M}_8 \]
we don't need the detailed form of this condition, just the essence of the argument.

III Examples

Let's construct an M-theory example.

Take IIB $T^6 \times K3$. I choose F_3

$2 h (-1)^F \omega$

and H_2 flux that preserves either $N=1$ or $N=2$ SUSY.

Let me recall that m on $T^6/Z_2 \simeq \frac{\text{II}B}{K3}$

(Dasgupta & Mullik and written)

Take an orbifold $K3$

$ds^2 = d\sigma^2 + d\rho^2 + d\sigma d\rho$

$\rho \in \mathbb{H}_{(1,1)}(K3, \mathbb{Z}) \in \mathbb{H}_{(1,1)}(K3, \mathbb{Z})$.

$H_2 = (2 + \rho) \wedge d\sigma + c.c.$

$F_3 = \iota(\rho - \overline{\rho}) \wedge d\sigma + c.c.$

So $\mathcal{S}_n = \frac{1}{2} (2 + \rho) + c.c.$
\(B' = \tilde{B}' + \tilde{A}' d\nu \quad C' = \tilde{C}' + \tilde{A}' d\nu \)

1. Analyze along \(\nu_1 \) and lift to M-theory.

\[
\begin{align*}
\delta_\alpha^\mu = & -\omega_{\mu
u} \eta_{\nu\rho} dx^\rho d\nu + \omega_{\nu} (d\nu d\nu + (d\nu)^2) + \omega_{\nu} ((d\nu + \tilde{A})^2 \\
+ & \omega_{\nu} ((d\nu + \tilde{A})^2)
\end{align*}
\]

\(\leftarrow \text{M-theory circle} \)

Flux:

\[
\begin{align*}
(\tilde{\omega}_\nu)^{ij} = & (\tilde{B}')^{ij} \\
(\tilde{\omega}_\nu)^{ij}_{\nu_1} = & (\tilde{C}')^{ij}_{\nu_1} \\
(\tilde{\omega}_\nu)^{ijkl} = & 3 (\tilde{C}')^{ijkl} \tilde{A}^k
\end{align*}
\]

\[
\begin{align*}
\sum_{\alpha} \int_{\alpha} & \to \chi_5 \\
\downarrow & \\
\frac{1}{15} / 26 & \nu
\end{align*}
\]

The manifold action yields:

\[
\begin{align*}
(\nu, \nu_1, \nu_0, y, \nu) \quad \to \quad (-\nu, -\nu_1, -\nu_0, -y, -\nu)
\end{align*}
\]

This is a Mink. flux cond. f

M-theory.